Effect of adjuvant radiotherapy to the internal mammary lymph nodes in patients with early node-positive breast cancer

Lise B J Thorsen
On behalf of the DBCG Radiotherapy Committee
DBCG-IMN

- IMN metastasis
 - Often w. medial tumor/N+ disease
 - A poor prognostic sign
- Surgical studies: no beneficial effect IMN dissection
- IMN-RT: increased toxicity with earlier techniques
- No consensus on whether IMN-RT is useful
1980’s
Internal mammary node (IMN) RT for all N+ breast cancer patients

1990’s
Increased awareness on RT-induced heart disease

2000
Anthracyclines

2003
No evidence for effect of IMN-RT

Right side + IMN RT
Left side No IMN-RT

Left side heart dose high
DBCG-IMN

↑ Breast cancer death
↓ Heart death

Right side
+ IMN RT

Left side
No IMN-RT
Hypotheses

In patients with early node positive breast cancer, IMN-RT

- Improves overall survival
- Prevents distant recurrence
- Decreases breast cancer mortality
DBCG-IMN: Design

- Nation-wide population based cohort study
- Inclusion: 2003-2007
 - operable unilateral early BC
 - one or more macrometastatic axillary lymph nodes
 - no prior malignancies
 - age<70 years
 - Treated with standard RT after introduction of new internal mammary node guidelines
 - No recurrence earlier than 30 days after RT
DBCG-IMN: Design

Ineligible
No or non-standard RT 134
Early recurrence 52
Micrometastases 33
Stage 4 disease at diagnosis 38

Primary endpoint: Overall Survival
Secondary endpoints: Metastatic disease, Breast cancer death

Multivariate model adjusting for known prognostic factors: age, menopausal status, pT, pN, and grade, tumor location, stratified for receptor status and histological type
<table>
<thead>
<tr>
<th>Patient and tumor characteristics</th>
<th>IMN RT (n=1485)</th>
<th>No IMN RT (n=1586)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median age (range)</td>
<td>56 (23-70)</td>
<td>57 (27-70)</td>
</tr>
<tr>
<td>Pre-menopausal</td>
<td>611 (41%)</td>
<td>646 (40%)</td>
</tr>
<tr>
<td>Estrogen receptor positive (%)</td>
<td>1202 (81%)</td>
<td>1274 (80%)</td>
</tr>
<tr>
<td>Invasive ductal carcinoma</td>
<td>1305 (88%)*</td>
<td>1346 (85%)*</td>
</tr>
<tr>
<td>Invasive lobular carcinoma</td>
<td>134 (9%)</td>
<td>163 (10%)</td>
</tr>
<tr>
<td>Other</td>
<td>46 (3%)</td>
<td>77 (5%)</td>
</tr>
<tr>
<td>Grade I</td>
<td>307 (19%)</td>
<td>307 (19%)</td>
</tr>
<tr>
<td>Grade II</td>
<td>710 (48%)</td>
<td>743 (47%)</td>
</tr>
<tr>
<td>Grade III</td>
<td>414 (28%)</td>
<td>456 (29%)</td>
</tr>
<tr>
<td>pT1</td>
<td>527 (36%)</td>
<td>556 (35%)</td>
</tr>
<tr>
<td>pT2</td>
<td>830 (56%)</td>
<td>905 (57%)</td>
</tr>
<tr>
<td>pT3</td>
<td>126 (9%)</td>
<td>124 (8%)</td>
</tr>
<tr>
<td>pN1</td>
<td>867 (58%)</td>
<td>949 (60%)</td>
</tr>
<tr>
<td>pN2</td>
<td>396 (27%)</td>
<td>412 (26%)</td>
</tr>
<tr>
<td>pN3</td>
<td>222 (15%)</td>
<td>225 (14%)</td>
</tr>
<tr>
<td>Lateral</td>
<td>904 (61%)</td>
<td>943 (60%)</td>
</tr>
<tr>
<td>Medial/central</td>
<td>578 (39%)</td>
<td>640 (40%)</td>
</tr>
</tbody>
</table>
DBCG-IMN: Treatment

<table>
<thead>
<tr>
<th></th>
<th>IMN RT (n=1485)</th>
<th>No IMN RT (n=1586)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiotherapy: 48 Gy/24 F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMN-RT (%)</td>
<td>1431 (96%)</td>
<td>161 (10%)</td>
</tr>
<tr>
<td>Axillary level II-III (%)</td>
<td>1213 (82%)</td>
<td>1294 (82%)</td>
</tr>
<tr>
<td>Axillary level I-II-III (%)</td>
<td>272 (18%)</td>
<td>292 (18%)</td>
</tr>
<tr>
<td>Boost after BCS (%)</td>
<td>176 (33%)</td>
<td>164 (30%)</td>
</tr>
<tr>
<td>Type of surgery</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastectomy + AC(%)</td>
<td>959 (65%)</td>
<td>1048 (66%)</td>
</tr>
<tr>
<td>Breast conserving +AC(%)</td>
<td>526 (35%)</td>
<td>538 (34%)</td>
</tr>
<tr>
<td>Systemic treatment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-hormonal therapy (%)</td>
<td>697 (47%)</td>
<td>741 (47%)</td>
</tr>
<tr>
<td>Chemotherapy (%)</td>
<td>274 (19%)</td>
<td>304 (19%)</td>
</tr>
<tr>
<td>Both (%)</td>
<td>514 (35%)</td>
<td>541 (34%)</td>
</tr>
</tbody>
</table>
DBCG-IMN: QA RT-techniques

- Doses to normal tissues acceptable
- IMN-RT intended: Some underdosage
- IMN-RT NOT intended: Some dose unavoidable
- ->Possible dilution of measurable IMN-RT effect!
Pattern of recurrence

<table>
<thead>
<tr>
<th>Pattern of recurrence</th>
<th>IMN RT (n=1485)</th>
<th>No IMN RT (n=1586)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local recurrence</td>
<td>29 (2.0 %)</td>
<td>21 (1.3 %)</td>
</tr>
<tr>
<td>Regional lymph node recurrence</td>
<td>10 (0.7 %)</td>
<td>15 (0.9 %)</td>
</tr>
<tr>
<td>Contralateral breast cancer</td>
<td>39 (2.6 %)</td>
<td>36 (2.3 %)</td>
</tr>
</tbody>
</table>

Pattern of recurrence Median FU= 8.0 years
Distant recurrence

Cumulative incidence (%)

Distant recurrence

Adjusted HR: 0.88 (0.77; 1.01)
P = 0.07

Difference: 2.1%

Events All
IMN RT 410 1485
No IMN RT 467 1586

At risk
IMN RT 1485 1322 1193 1043 521
No IMN RT 1586 1401 1229 1075 500
Secondary endpoint
Breast cancer mortality

<table>
<thead>
<tr>
<th>Cause of death</th>
<th>IMN RT (n=1485)</th>
<th>No IMN RT (n=1586)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast cancer</td>
<td>324</td>
<td>390</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Other malignancy</td>
<td>26</td>
<td>39</td>
</tr>
<tr>
<td>Other</td>
<td>21</td>
<td>32</td>
</tr>
<tr>
<td>Unknown</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Breast cancer mortality

Cumulative incidence (%)
Breast cancer death

Events All
IMN RT 324 1485
No IMN RT 390 1586

Difference: 2.4%
Adjusted HR: 0.85 (0.73; 0.98)
P = 0.03

Years since radiotherapy

At risk
IMN RT 1485 1406 1299 1203 782
No IMN RT 1586 1507 1352 1246 790
Primary endpoint: Overall Survival

Adjusted HR: 0.83 (0.72; 0.95) p = 0.006

Difference: 3.5%
Association: ✔ - Causality?

- Increasing risk of IMN metastasis with:
 - Increasing number of positive axillary lymph nodes
 - Medial/central tumor location
Subgroup analysis
Endpoint: Overall survival

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Events/patients</th>
<th>IMN-RT</th>
<th>No IMN-RT</th>
<th>HR (95% CI)</th>
<th>8-year survival rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral 1-3 nodes</td>
<td></td>
<td>91/511</td>
<td>91/563</td>
<td>1.13 (0.84 - 1.51)</td>
<td>82.9% 85.7%</td>
</tr>
<tr>
<td>Medial/central 1-3 nodes</td>
<td></td>
<td>66/352</td>
<td>88/382</td>
<td>0.79 (0.58 - 1.09)</td>
<td>83.4% 78.8%</td>
</tr>
<tr>
<td>Lateral ≥ 4 nodes</td>
<td></td>
<td>135/389</td>
<td>164/378</td>
<td>0.72 (0.57 - 0.90)</td>
<td>68.3% 59.0%</td>
</tr>
<tr>
<td>Medial/central ≥ 4 nodes</td>
<td></td>
<td>84/221</td>
<td>128/256</td>
<td>0.81 (0.61 - 1.07)</td>
<td>62.5% 54.6%</td>
</tr>
<tr>
<td>All patients</td>
<td></td>
<td>376/1473</td>
<td>471/1579</td>
<td>0.83 (0.72 - 0.95)</td>
<td>76.1% 72.6%</td>
</tr>
</tbody>
</table>
DBCG-IMN: Conclusion

- Overall survival improved with IMN-RT
- Risk of metastatic disease decreased with IMN-RT
- Risk of breast cancer death decreased with IMN-RT
DBCG-IMN: Conclusion

Benefit increased with

• Increasing number of lymph nodes involved
• Medial or central tumor location
Acknowledgements

This work was supported by:

• The Danish Cancer Society
• CIRRO – the Lundbeck Foundation Center for Interventional Research in Radiation Oncology
• The Breast Friends Cancer Campaign
• Max and Inger Wørzners Memorial Foundation
Evidence 2013-14

- **EBCTCG meta-analysis**
 - RT after mastectomy+axillary dissection
 - 20 years results: RT reduced breast cancer mortality (BCM) for all (n=3086) N+ patients, effect both in pts with 1-3 and 4+ positive nodes

- **EORTC 22922-10925**
 - 4004 pts. with medial/central tumor and/or N+ disease randomised to medial supraclavicular (MS) and IMN-RT
 - 10 year results: Improved DFS and D-DFS with MS+IMN-RT, OS borderline significant

- **MA.20**
 - 1832 pts. randomised to whole breast irradiation (WBI) versus WBI + regional RT, 85 % of patients with 1-3 nodes positive
 - 5 year results: Improved DFS and D-DFS with addition of regional RT, OS borderline significant
Retrospective and non-randomized: Bias and confounding
Small: Insufficient power to detect an effect
Old: Surgical and systemic treatment (if any) are outdated