Danish Breast Cancer Cooperative Group

Survival Analysis Basic concepts

DBCG

Statistisk analyse af overlevelsesdata

Maj-Britt Jensen, DBCG

1

In many studies of breast cancer, the main outcome is the time to an event of interest,

e.g. time to death

time to recurrence (disease-free survival)

Usually for some individuals true time to event is unknown, and also survival data rarely normally distributed, therefore survival analysis necessary

Survival analysis is a collection of statistical procedures for data analysis where the outcome variable of interest is time until an event occurs

Survival times unknown for a subset of the study group: censoring

e.g. a patient has not (yet) experienced the relevant outcome

a patient is lost to follow-up

Danish Breast Cancer Cooperative Group

Survival data are generally described in terms of two related probabilities; survival S(t) and hazard h(t) or $\lambda(t)$

Hazard is the probability that an individual who is under observation at time t has an event at that time

Survival is the probability that an individual survives from the time origin to a specified time t.

Kaplan-Meier survival curve

- a useful summary

Danish Breast Cancer Cooperative Group

Median survival time 4.8 yrs vs 8.0 yrs

Danish Breast Cancer Cooperative Group

ARR = Absolute Risk Reduction (100%- 49.2%)-(100%-63.5%) = 14.3%

RR = Relative Risk at 5 yrs (100-63.5)/(100-49.2) = 0.72

i.e.

the relative risk reduction is 28%

Danish Breast Cancer Cooperative Group

Previous: ARR = 14.3%RR = 0.72

Absolute risk reduction 85.1%-79.5% = 5.6%

Relative risk at 5 yrs (100-85.1)/(100-79.5) = 0.73

i.e. the relative risk reduction is 27%

Danish Breast Cancer Cooperative Group

Absolute risk reduction 85.1%-79.5% = 5.6%

Relative risk reduction 27%

Number needed to treat The number of pts who need to be treated to prevent one additional event

NNT = 1/ARR = 1/0.056 = 18

Danish Breast Cancer Cooperative Group

Clinical vs statistical assessment

Patients at risk

The logrank test - the most widely used method of comparing two or more survival curves

The Cox <u>proportional</u> hazards model A survival analysis regression model which describes the relation between the event incidence and a set of covariates

HR = 0.75 (95% CI: 0.66-0.84), p<0.0001

Danish Breast Cancer Cooperative Group

In some cases one estimate is not representative

Examples: Hormone receptor status Grade of malignancy Treatment

Danish Breast Cancer Cooperative Group

Adjustment Non-randomised studies (confounding/covariates)

Multiple prognostic factors can be adjusted for using multivariate modelling

Rule of thumb Minimum 10 events pr. variable

Danish Breast Cancer Cooperative Group

Danish Breast Cancer Cooperative Group

Interaction compare the treatment effect in subgroups

A specific prior suspicion

Test of interaction

Danish Breast Cancer Cooperative Group

16

Statistical models may give rise to misleading conclusions

Checking that a given model is an appropriate representation of the data is important, but can be complicated

Advanced survival analysis

Competing risks Multistate models Time-dependent covariates Relative survival

Danish Breast Cancer Cooperative Group

References available on request

mj@dbcg.dk