NACT – Kirurgiske aspekter

Kirurgisk Udvalg, DBCG

Outline

- Indications for NACT
- Local control after NACT and BCS
- Suboptimal converting to BCS after NACT
 - Prediction of pCR
 - Involved margins
 - Microcalcifications
- Treatment of the axilla after NACT

Indications for NACT according to the DBCG guidelines

- cT2: (2,0 cm < tumor <= 5.0 cm), cN0-N1, and non-lobulær type invasive breast cancer, if chemotherapy indicated:
 - ER negative, HER2 negative
 - HER2 positive
 - ER positive, premenopausal

WHAT DO SURGEONS WANT FROM NACT?

Offer more conservative surgery

..and more successful conservative surgery

Avoid

- mastectomy for pCR
- node clearance for pCR

Facilitate pathway

Ask the panel a question....
#ORBSQ&A

Articles

Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: meta-analysis of individual patient data from ten randomised trials

Early Breast Cancer Trialists' Collaborative Group (EBCTCG)*

Treated 1983-2002

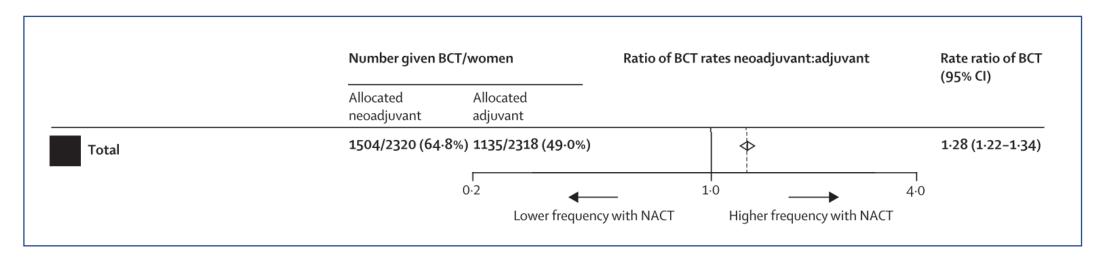
	Trials (n)*	Women (n)	Deaths (n)†
No anthracycline or taxane ^{8,11,12,17} ‡	4	918	315
Anthracycline, no taxane ^{9,10,14-16}	5	2936	1163
Anthracycline and taxane ¹³	1	902	126
Total	10	4756	1604

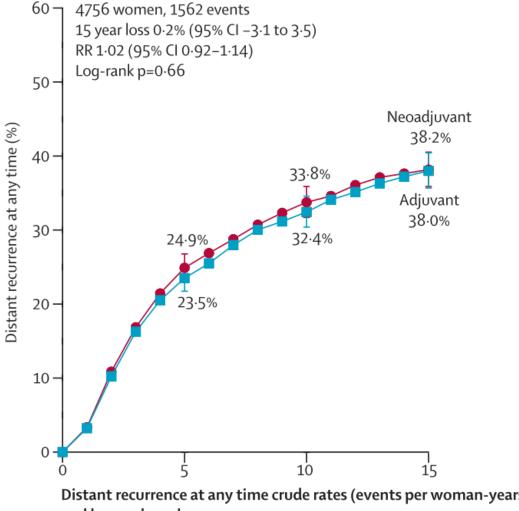
Lancet Oncol 2018; 19: 27-39

Published Online
December 11, 2017
http://dx.doi.org/10.1016/
S1470-2045(17)30777-5

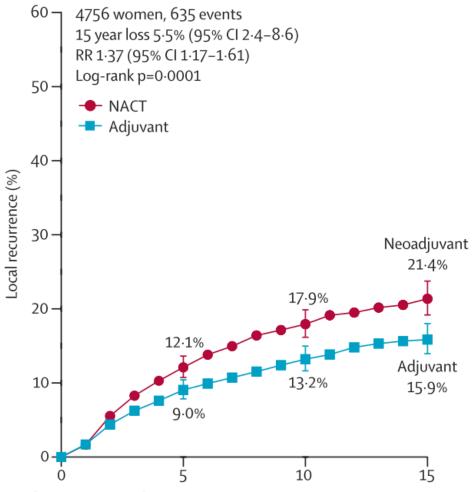
See Comment page 2

*Full list of members in the appendix (pp 19–24) or at https://www.ctsu.ox.ac.uk/ research/ebctcg

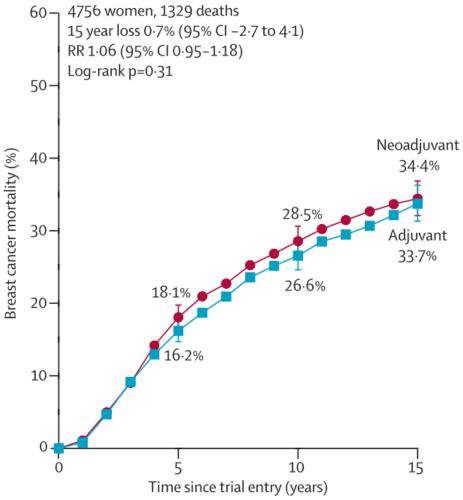

Correspondence to:
EBCTCG Secretariat, Medical
Research Council Population
Health Research Unit, Nuffield
Department of Population
Health, Oxford OX3 7LF, UK
bc.overview@ndph.ox.ac.uk

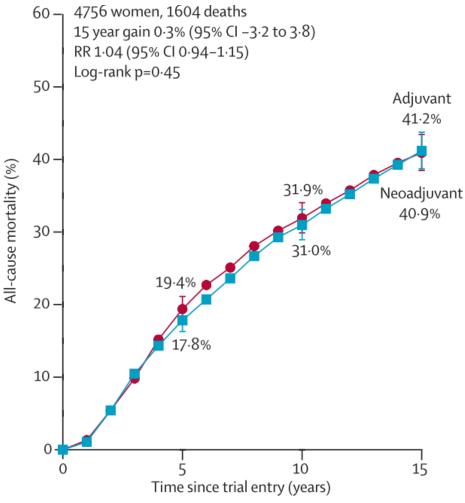

See Online for appendix

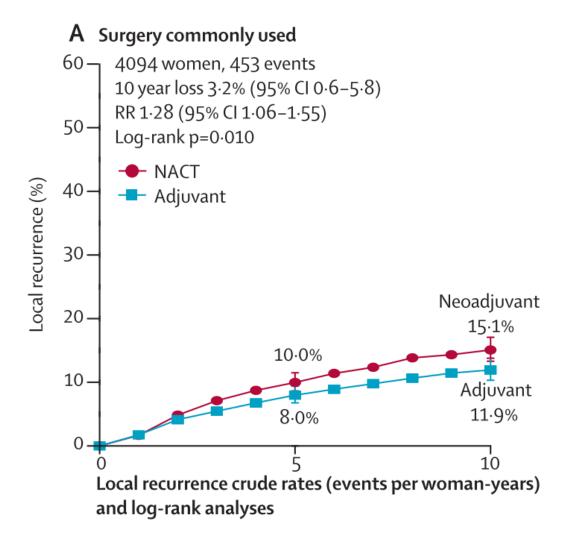
Breast-conserving surgery after NACT

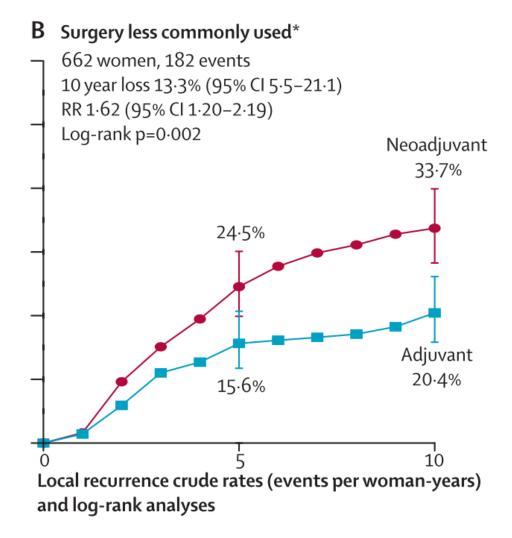

- 65% after NACT
- 49% in patients randomized to adjuv. CT

	Clinical response	Clinical response					
	Complete*	Partial†	Stable or progressive disease‡	Unknown	Total		
All women							
Breast-conserving	452 (83%)	541 (68%)	246 (42%)	265 (68%)	1504 (65%)		
Mastectomy	92 (17%)	258 (32%)	342 (58%)	124 (32%)	816 (35%)		
Unknown	2 (NA)	4 (NA)	10 (NA)	51 (NA)	67 (NA)		
Total response§	546/1947 (28%)	803/1947 (41%)	598/1947 (31%)	440 (NA)	2387 (100%)		




Distant recurrence at any time crude rates (events per woman-years) and log-rank analyses


Local recurrence crude rates (events per woman-years) and log-rank analyses



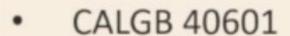
Breast cancer mortality crude rates (events per woman-years) and log-rank analyses

Any death crude rates (events per woman-years) and log-rank analyses

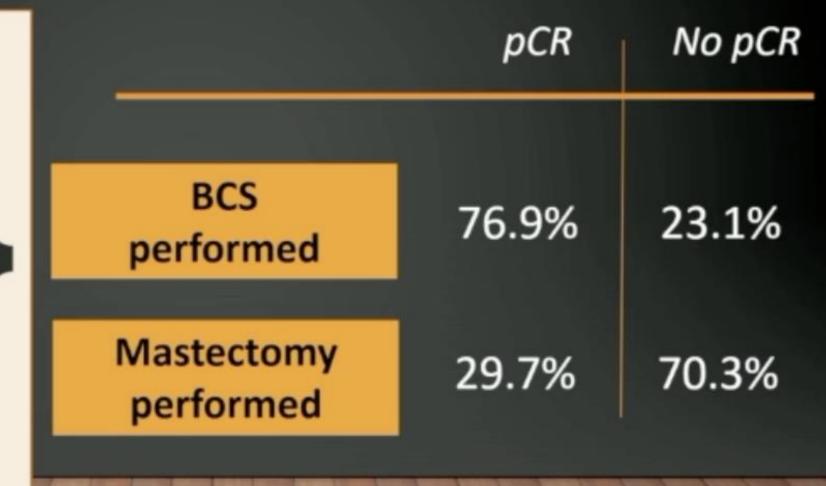
Meta-analysis of neoadjuvant therapy and its impact in facilitating breast conservation in operable breast cancer

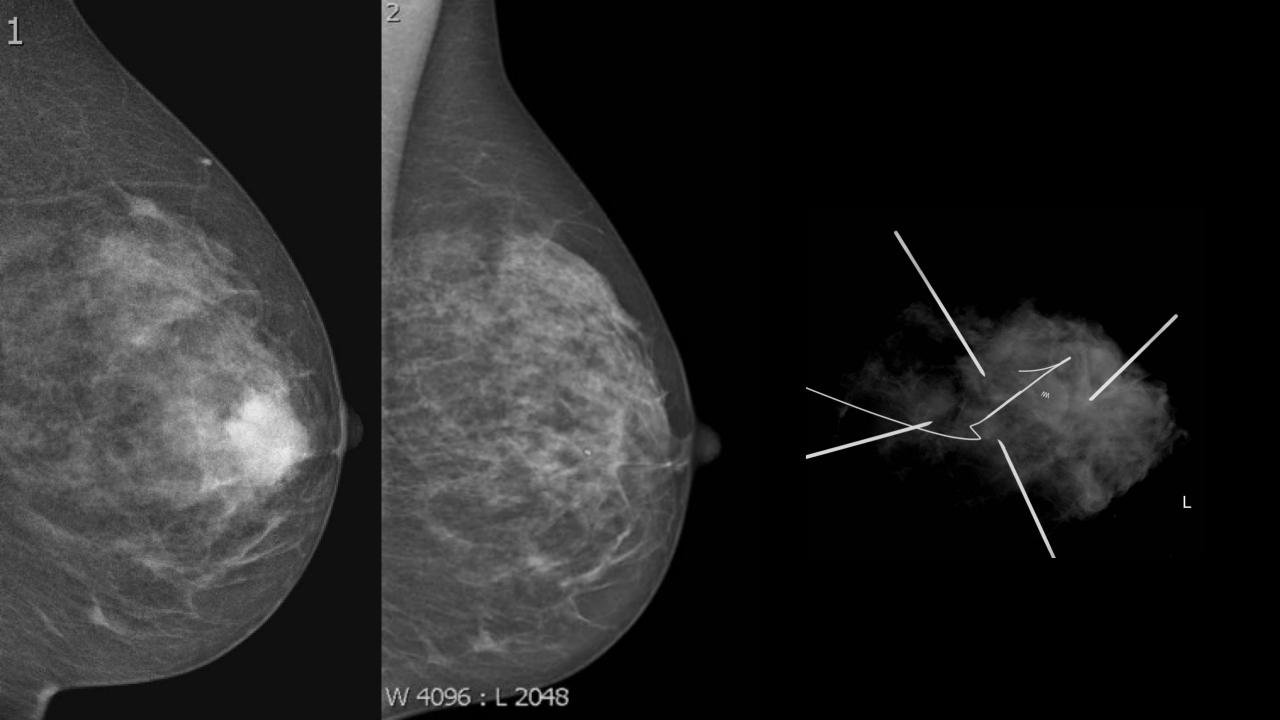
A. Karakatsanis^{1,5}, M. K. Tasoulis⁵, F. Wärnberg¹, G. Nilsson^{2,3,4} and F. MacNeill⁵

	Eligibility fo	or BCS (%)			
	Before NAT	After NAT	oCR (%)	BCS performed (%)	Shift to BCS (%)
CALGB 40601	41.4	63.7	63.7	49.0	12.9
CALGB 40603	54.2	68.1	68⋅1	47.3	− 10·9
CHER-LOB	43.8	n.a.	89.9	64.7	39.7
IMPACT	43.6	61.8	34.6	41.5	32.3
NeoALTTO	29.8	46.9	75.4	43.6	28.2
TEAM IIA	61.8	75	64.6	65.7	23.1
TRYPHAENA	46.2	n.a.	92	58.7	21.9
Pooled values	43.3 (41.3, 45.9)	60.4 (57.8, 62.9)	74.8 (72.5, 77.0)	51.8 (49.5, 54.2)	16.6 (14.4,19.0)


Trial	Weight (%)	Rate ratio			Rate ratio		
CALGB 40601 ¹⁷	13.6	0.20 (0.13, 0.31)					
CALGB 40603 ¹⁵	13.2	0.15 (0.09, 0.24)					
CHER-LOB ¹⁹	13.9	0.44 (0.29, 0.67)		_			
IMPACT ²³	14.8	0.62 (0.43, 0.89)					
NeoALTTO ²⁰	16.4	0.37 (0.30, 0.47)		-0	-		
TEAM IIA ²⁴	14.1	0.36 (0.24, 0.54)	—o—				
TRYPHAENA ²²	14.1	0.24 (0.16, 0.36)					
Total	100.0	0.31 (0.22, 0.44)		•	•		
Heterogeneity: $\tau^2 = 0.16$;	$\chi^2 = 33.04, 6 \text{ d.f.}, P < 0.001$	$; I^2 = 82\%$	-			+	
Test for overall effect: $Z=$	6·82, <i>P</i> <0·001		0.01	0.1	1	10	100
	•		9	Shift to BCS		oCR	

C Shift to BCS versus oCR


Trial	Weight (%)	Rate ratio		Rate ratio		
CALGB 40601 ¹⁷	19.6	0.27 (0.17, 0.42)				
CALGB 40603 ¹⁵	19.5	0.19 (0.12, 0.30)				
CHER-LOB ¹⁹	19.6	0.79 (0.50, 1.24)				
IMPACT ²³		Not estimable				
NeoALTTO ²⁰	21.3	0.81 (0.62, 1.04)		-0-		
TEAM IIA ²⁴		Not estimable				
TRYPHAENA ²²	20.0	0.35 (0.23, 0.54)				
Total	100-0	0.41 (0.23, 0.74)		•		
Heterogeneity: $\tau^2 = 0.40$;	$\chi^2 = 43.58, 4 \text{ d.f.}, P < 0.001$	$; I^2 = 91\%$	-			
Test for overall effect: $Z=$	2·96, <i>P</i> =0·003		0.01 0.	1 1	10	100
			Shift to	o BCS	pCR	


POOLED RESULTS RCT'S

pCR (47.9%)

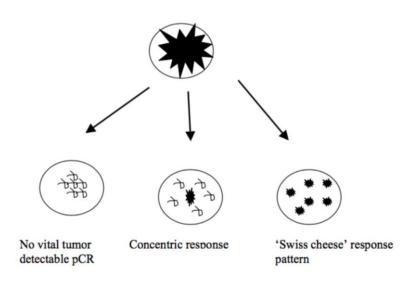
- CALGB 40603
- CHER-LOB
- IMPACT
- NeoALTTO
- TEAM IIA
- TRYPHAENA

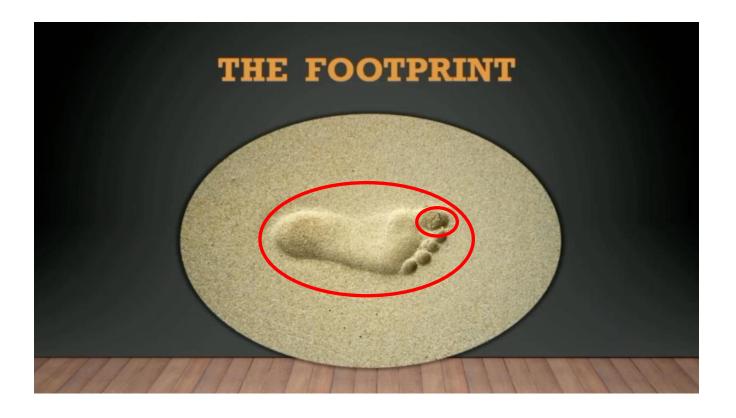
Predicting pCR

World J Surg (2019) 43:2254–2261 https://doi.org/10.1007/s00268-019-05032-9

SCIENTIFIC REVIEW

MRI Performance in Detecting pCR After Neoadjuvant Chemotherapy by Molecular Subtype of Breast Cancer


Nancy Yu1 · Vivian W. Y. Leung1 · Sarkis Meterissian1,2,3,4

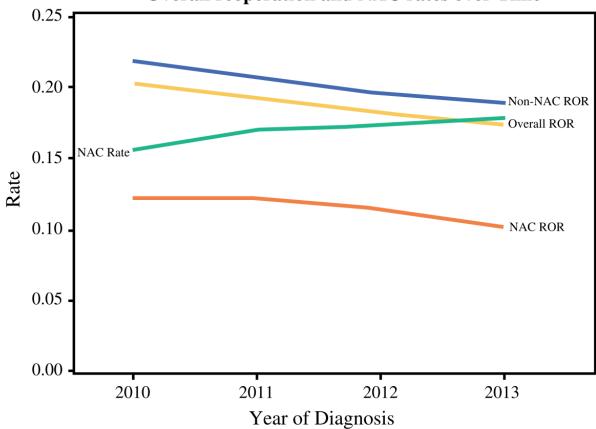

Review 10 studies

	PPV (% rCR = pCR)	NPV
Overall	50%	90%
Triple Neg / Her2 +	80-90%	90%
ER+	33%	80-90%

Involved margins after NACT

In pCR it's easy but what to do in partial response?

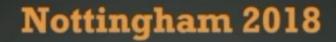
Ann Surg Oncol (2017) 24:1507–1515 DOI 10.1245/s10434-016-5760-8


ORIGINAL ARTICLE - BREAST ONCOLOGY

Fewer Reoperations After Lumpectomy for Breast Cancer with Neoadjuvant Rather than Adjuvant Chemotherapy: A Report from the National Cancer Database

Jeffrey Landercasper, MD, FACS^{1,2}, Barbara Bennie, PhD³, Benjamin M. Parsons, DO⁴, Leah L. Dietrich, MD⁴, Caprice C. Greenberg, MD, MPH, FACS⁵, Lee G. Wilke, MD, FACS⁵, and Jared H. Linebarger, MD, FACS^{2,6}

	Incomplete excision
Adjuvant (59470)	20.3%
NACT (12177)	11.4%

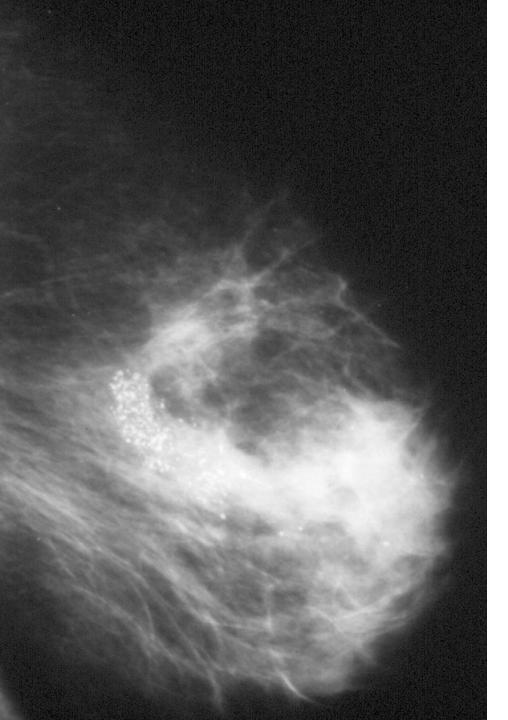

Overall reoperation and NAC rates over Time

Comparing NAC to no NAC (reference level no NAC) 1 Stage 1 to 3 2 Stage 1 3 Stage 2 4 Stage 3 Comparing NAC to no NAC within subtype (reference level no NAC, subtype fixed) 5 Luminal A: NAC yes vs no 6 Luminal B1: NAC yes vs no 7 Luminal B2: NAC yes vs no 8 Triple Neg: NA yes vs no 9 Her 2 type: NAC yes vs no

INVOLVED MARGINS AFTER BCS (POST - NAC) If no pCR... Incomplete excision Adjuvant (59,470) 20.3% 23% Neo-adjuvant (12,157) 46% Ann Surg Oncol (2017) 24:1507-1515

The role of oncoplastic surgery after NACT

101 / 707 (14%) primary operable breast cancer


71% Triple –ve or Her2 +ve

29% ER +ve / Her2 -ve

Overall 55% BCS

with Level 2 oncoplastic

Microcalcifications and NACT

Ann Surg Oncol (2017) 24:1492–1498 DOI 10.1245/s10434-016-5741-y

ORIGINAL ARTICLE - BREAST ONCOLOGY

Do Calcifications Seen on Mammography After Neoadjuvant Chemotherapy for Breast Cancer Always Need to Be Excised?

Yara Feliciano, MD¹, Anita Mamtani, MD², Monica Morrow, MD³, Michelle M. Stempel, MPH³, Sujata Patil, PhD⁴, and Maxine S. Jochelson, MD⁵

Memorial Sloan Kettering Cancer Center April 2009 - October 2015.

90 patients with pre- and posttreatment MRI and mammograms demonstrating calcifications within the tumor bed either at presentation or after treatment.

TABLE 2 Correlation between changes in calcification on mammogram, changes in enhancement on magnetic resonance imaging (MRI), and rates of pathologic complete response (pCR)

Change in calcifications on mammography	Change in MRI enhance	ment	pCR n (%)
	Resolved n (%)	Decreased n (%)	
Resolved $(n = 3)$	3 (100)	0 (0)	3 (100)
Decreased $(n = 15)$	5 (33)	10 (67)	4 (27) ^a
No change $(n = 42)$	16 (38)	26 (62)	$10 (24)^{b}$
Increased $(n = 24)$	14 (58)	10 (42)	9 (38) ^c
New $(n = 6)$	2 (33)	4 (67)	3 (50) ^d

^a 1 of 4 had resolved MRI enhancement; 3 of 4 had decreased MRI enhancement

^b 9 of 10 had resolved MRI enhancement; 1 of 10 had decreased MRI enhancement

^c 9 of 9 had resolved MRI enhancement

^d 1 of 3 had resolved MRI enhancement; 2 of 3 had decreased MRI enhancement

RESEARCH	Open Access
----------	-------------

Residual microcalcifications after neoadjuvant chemotherapy for locally advanced breast cancer: comparison of the accuracies of mammography and MRI in predicting pathological residual tumor

Yeong Yi An¹, Sung Hun Kim² and Bong Joo Kang^{2*}

Clinical stage

IIA	3 (10.3)
IIB	7 (24.1)
IIIA	18 (62.1)

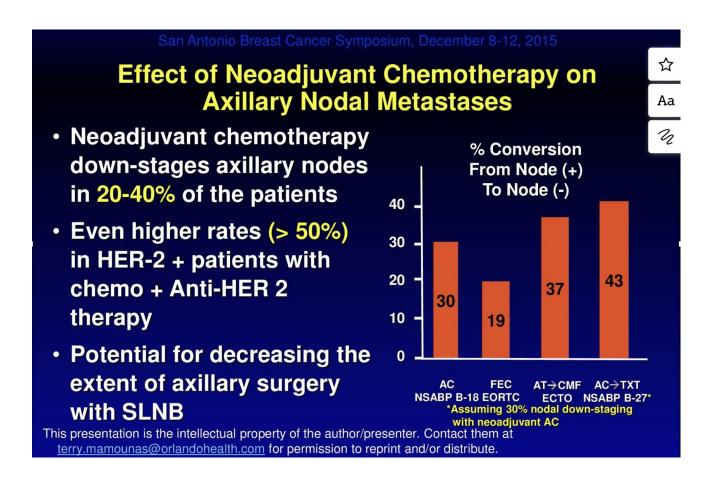

IIIC 1 (3.5)

Table 3 Residual mammographic microcalcifications after NAC correlated with final pathological results

	Benign calcifications $(n = 13)$	Malignant calcifications (n = 16)	p value
Pathologic responses			0.03
pCR	4 (100.0)	0 (0.0)	
Non-pCR	9 (36.0)	16 (64.0)	

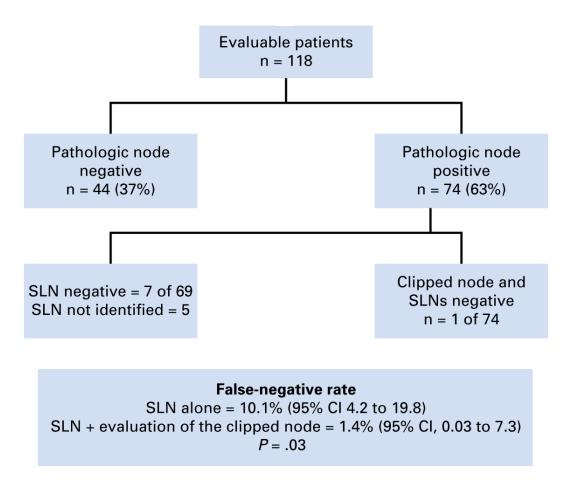
Treatment of the axilla after NACT

Axillary metastatic lymph nodes are converted to node negative in most patients having pCR in the breast

SN after NACT in node positive patients

Study	N	Detection	Nodal pCR
SENTINA (arm C)	474	80%	49%
ACOSOG Z1071	649	93%	41%
SN FNAC	153	88%	30%

Table 3 False-negative rates for SLNB after conversion to clinically node-negative disease following NACT						
Prospective trial	Overall false-negative rate	Stratified by number of SLNs			Stratified by SLN-detection technique	
		1 (%)	2 (%)	≥3 (%)	Single agent (%)	Dual agent (%)
SENTINA (treatment arm C) ⁵⁸	14.2 (95% CI 9.9–19.4)	24.3	18.5	7.3	16.0*	8.6
ACOSOG Z1071 ⁵⁷	12.6% (95% CI 9.9-16.1)	31.5	21	9.1	20.3‡	10.8
SN FNAC ⁵⁶	8.4% (95% CI 2.4–14.4)	18.2	4.9§	NR	16.0*	5.2


^{*}With radioactive colloid only. ‡With either radioisotope alone or blue dye alone. §Reported as two or more. Abbreviations: ACOSOG, American College of Surgeons Oncology Group; NACT, neoadjuvant chemotherapy; NR not reported; SLN, sentinel lymph node; SLNB, sentinel lymph-node biopsy.

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Improved Axillary Evaluation Following Neoadjuvant Therapy for Patients With Node-Positive Breast Cancer Using Selective Evaluation of Clipped Nodes: Implementation of Targeted Axillary Dissection

Abigail S. Caudle, Wei T. Yang, Savitri Krishnamurthy, Elizabeth A. Mittendorf, Dalliah M. Black, Michael Z. Gilcrease, Isabelle Bedrosian, Brian P. Hobbs, Sarah M. DeSnyder, Rosa F. Hwang, Beatriz E. Adrada, Simona F. Shaitelman, Mariana Chavez-MacGregor, Benjamin D. Smith, Rosalind P. Candelaria, Gildy V. Babiera, Basak E. Dogan, Lumarie Santiago, Kelly K. Hunt, and Henry M. Kuerer

Caudle et al. J Clin Oncol 2016; 34:1072-1078.

Ongoing trials: N-positive pre NACT

• GANEA 3 (France)

- pN+ (clipped node) → NACT → SN + excision clipped node + ALND
- N=385
- Outcome: FNR

 RISAS - Primary Radioactive Iodine Seed Localization in the Axilla in Axillary Node Positive Breast Cancer Combined With Sentinel Node Procedure (the Netherlands)

- pN+ (iodine seed) → NACT → SN + excision iodine seed + ALND
- N=200
- Outcome: Identification rate, FNR

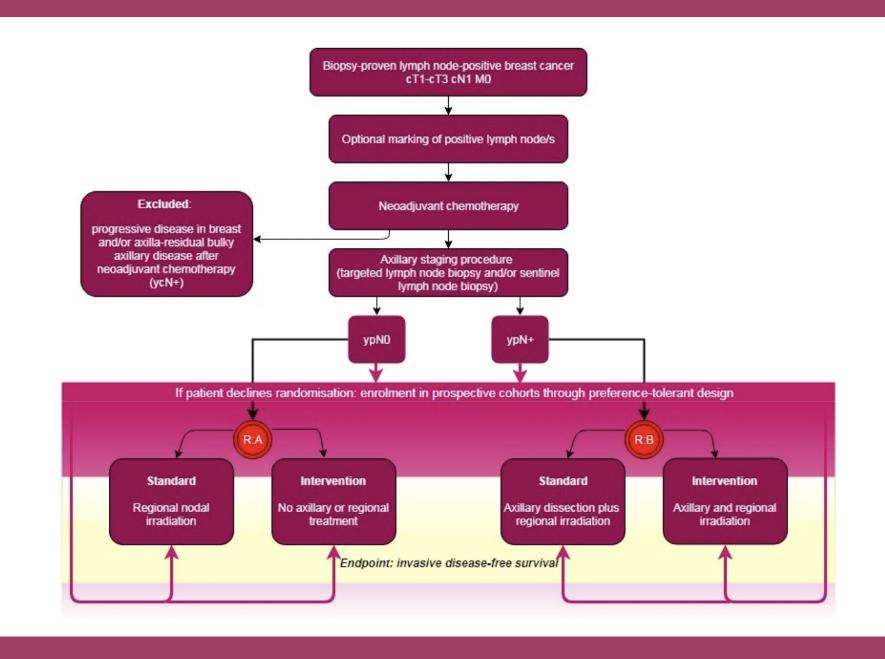
• NSABP B51 (USA)

• pN+
$$\rightarrow$$
 NACT \rightarrow SN (\geq 2) ypN0
No regional RT

- N=1636 (71% included)
- Outcome: recurrence-free interval (IBC-RFI)

ATNEC (UK)

• pN+ → NACT → SN (≥2 + clipped node) ypN0


Regional RT/ALND

No regional RT/ALND

- N=1900 (not started to include)
- Outcome: 5-yr DFS

NEONOD 2 (Italia)

- pN+ → NACT → SN
 - ypN1(mi) No axillary treatment
 - ypN0/ypN0(i+) No axillary treatment
 - ypN1 ALND
- N=1500
- Outcome: 5-yr DFS

ALLIANCE A011 202 (USA)

- N=2918
- Outcome: invasive breast cancer recurrence-free interval (IBC-RFI)

TAXIS trial (Switzerland)

- N=1500
- Outcome: DFS

Tak for opmærksomheden